Tracking-Based Semi-Supervised Learning

نویسندگان

  • Alex Teichman
  • Sebastian Thrun
چکیده

In this paper, we consider a semi-supervised approach to the problem of track classification in dense 3D range data. This problem involves the classification of objects that have been segmented and tracked without the use of a class-specific tracker. We propose a method based on the EM algorithm: iteratively 1) train a classifier, and 2) extract useful training examples from unlabeled data by exploiting tracking information. We evaluate our method on a large multiclass problem in dense LIDAR data collected from natural street scenes. When given only three handlabeled training tracks of each object class, the final accuracy of the semi-supervised algorithm is comparable to that of the fully-supervised equivalent which uses two orders of magnitude more. Finally, we show that a simple algorithmic speedup based on incrementally updating a boosting classifier can reduce learning time by a factor of three.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Tracking Based Semi Supervised Learning using Background Subtraction - Classification (BSC) Model

In this paper, we tackle the issue of using semi supervised learning in classifying objects with tracking information. Based off the earlier work of Teichman and Thrun, we modify the approach using LIDAR data to extracting useful object classification information from a single fixed camera source. Our track data comes from background subtraction and segmentation of camera video data. Using semi...

متن کامل

Robust Object Tracking using Semi-Supervised Online Boosting

This work presents a detailed analysis and discussion of a new object tracking method using semi-supervised on-line boosting1. In order to avoid the drifting problem, which presents a challenge to adaptive tracking systems, the new approach incorporates prior knowledge of the tracked object into the tracking process via semi-supervised learning. This method makes it possible to distinguish betw...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

PhD Thesis Semi-Supervised Ensemble Methods for Computer Vision

V isual object classification and tracking are two of the cardinal problems in computer vision. Both tasks are extremely complicated and far from being solved. Recent advances towards building better detection and tracking systems were mainly achieved by improved representations and applying better learning algorithms. For the learning, usually supervised algorithms are applied which demand lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2011